

JVA Perimeter Patrol™
High Level Interface
Programmers Reference Guide

Programmers’ reference guide to developing custom applications using JVA Perimeter Patrol HLI

Version: 5.1
Date: October 2012
By: Benjamin Boyle

JVA Perimeter Patrol™
High Level Interface

Introduction

© JVA Technologies Pty Ltd 2012 Page 1 of 30
Version October 2012. Uncontrolled if printed

Table of Contents
1 Introduction .. 2

1.1 Required reading and setup .. 2

1.2 Contact details ... 3

2 Getting started ... 4

2.1 Configuring Perimeter Patrol .. 4

2.1.1 Configuring Perimeter Patrol to accept HLI connections .. 4

2.1.2 Setup Perimeter Patrol users .. 6

3 Using the HLI Demo Project ... 7

3.1 The Interpreter object .. 10

4 Using the HLI in your custom software ... 11

4.1 Step 1 - Adding the HLI to your development environment .. 11

4.2 Step 2 - Creating a HLITransportUser object ... 11

4.3 Step 3 - Implementing PP.HLITransport.IHLIClientTransportUser 13

4.4 Step 4 – Sending commands to Perimeter Patrol .. 21

4.4.1 Special commands .. 22

4.4.2 Commands that apply to all electric fence zones ... 22

4.4.3 Commands that apply to individual zones. .. 22

4.4.4 Other commands ... 23

4.5 Understanding the Alarms system ... 24

4.6 Understanding the Configuration Data structure .. 26

4.7 Understanding the LiveData structure .. 26

5 Appendix 1 – Fields in the Configuration Data .. 27

JVA Perimeter Patrol™
High Level Interface

Introduction

© JVA Technologies Pty Ltd 2012 Page 2 of 30
Version October 2012. Uncontrolled if printed

1 Introduction
JVA Perimeter Patrol, a software system for monitoring and commanding JVA Security

Electric Fence Devices, is designed exclusively for JVA Technologies Pty Ltd by Pakton

Technologies Pty Ltd of Brisbane, Australia.

The JVA Perimeter Patrol High Level Interface (HLI) allows you to monitor and command

JVA Security Electric Fence systems from within your own software systems.

Your software connects to the JVA Perimeter Patrol program over an encrypted TCP/IP

connection. The HLI component that we provide to your system programmers makes this

easy. Everything your programmers need to know is included in this document and the

documents named in the Required reading and setup section below.

1.1 Required reading and setup

This document assumes that you have already read and understood the following

documentation:

 JVA Perimeter Patrol User Manual

 JVA Perimeter Patrol Configuration Manual

JVA Perimeter Patrol™
High Level Interface

Introduction

© JVA Technologies Pty Ltd 2012 Page 3 of 30
Version October 2012. Uncontrolled if printed

1.2 Scope

Read this document if you want to create custom software programs that connect to JVA

Perimeter Patrol using the High Level Interface (HLI).

If you want to connect two instances of Perimeter Patrol together in Server / Client

configuration, please read section Connecting two instances of Perimeter Patrol in

Server / Client configuration using the HLI in the JVA Perimeter Patrol Configuration

Manual.

1.3 Contact details

Position Name Email

Author of this document Benjamin Boyle bboyle@pakton.com.au
Pakton Technologies CEO Paul Thompson sales@pakton.com.au
Pakton Technologies
General Manager

Kayleen Thompson sales@pakton.com.au

mailto:bboyle@pakton.com.au
mailto:paul@pakton.com.au
mailto:sales@pakton.com.au

JVA Perimeter Patrol™
High Level Interface

Getting started

© JVA Technologies Pty Ltd 2012 Page 4 of 30
Version October 2012. Uncontrolled if printed

2 Getting started
This document assumes that you have a Security Electric Fence installation contractor who

knows how to set up the electric fence systems as well as configure and command them

using the JVA Perimeter Patrol software package.

To begin, you will have an electric fence set up already, or you will have a small testing rig in

your office with a short section of fence and a number of JVA electric fence energisers or

other devices. You will have a computer with JVA Perimeter Patrol connected to the devices

and you will have already sent commands to the devices from that computer.

2.1 Configuring Perimeter Patrol

Since you will be connecting to Perimeter Patrol with the HLI, you need to configure it to

accept the connections. There are two small jobs you need to do:

 Configure Perimeter Patrol to accept HLI connections

 Configure the user accounts in Perimeter Patrol.

2.1.1 Configuring Perimeter Patrol to accept HLI connections

 Click Setup -> System Configuration

 Open the HLI Server tab

 Choose HLI Server Enabled

 Set the TCP Listening Port to a value between 1,000 and 10,000.

 Set a value for the Authentication Key. It doesn’t matter what value you use for the

Authentication Key during testing, but you should use the “Generate” button to make

a complicated key for your production sites, because this key is like a password code

that prevents unauthorized software from connecting to your Perimeter Patrol.

 Shut down and restart Perimeter Patrol as this is required for the new settings to take

effect.

Figure 1 - Enabling HLI Server to accept HLI connections

JVA Perimeter Patrol™
High Level Interface

Getting started

© JVA Technologies Pty Ltd 2012 Page 5 of 30
Version October 2012. Uncontrolled if printed

2.1.1.1 Use a static (fixed) IP Address for Perimeter Patrol

Ask your system administrator to configure your network router so that it assigns a static IP

Address to the computer running Perimeter Patrol. Your system administrator should be able

to tell you the new IP Address, but if he does not, you will need to find out. Here’s how:

 On the computer’s start menu, click Start -> Run and enter cmd.exe.

 If that doesn’t work, enter C:/windows/system32/cmd.exe

 If you don’t have “Run” on your start menu, you can find

C:/windows/system32/cmd.exe in explorer and double-click the file to start it.

 The window pictured below will open.

 Type ipconfig and press Enter.

 Write down the IPv4 address. This is the IP Address that your client software needs

to know.

 Sometimes your computer will have more than one IPv4 address, if it has more than

one network adapter device. Choose the address corresponding to the correct

network adapter device.

Figure 2 - Finding out the computer's static IP Address

JVA Perimeter Patrol™
High Level Interface

Getting started

© JVA Technologies Pty Ltd 2012 Page 6 of 30
Version October 2012. Uncontrolled if printed

2.1.2 Setup Perimeter Patrol users

Perimeter Patrol will not allow any HLI connection to receive information or receive

commands unless the HLI connection provides a username and password that matches one

those configured in Perimeter Patrol.

Your software will have to use these usernames and passwords to access Perimeter Patrol

over the HLI. You can hard-code the usernames and passwords in your software system if

you like, but we recommend you require your users to type them in manually.

You can find out how to setup Perimeter Patrol users in the JVA Perimeter Patrol

Configuration Manual.

Remember that there are three levels of security access permission:

1. Users – may view information

a. Accessible by your software via HLI

2. Supervisors – may clear alarms and send commands

a. Accessible by your software via HLI

3. Administrators – may configure the JVA Perimeter Patrol software

a. Not accessible to your software. JVA Perimeter Patrol configuration must be

done on the JVA Perimeter Patrol computer by an administrator.

Your HLI software will be given permissions according to the level of authentication it can

provide.

JVA Perimeter Patrol™
High Level Interface

Using the HLI Demo Project

© JVA Technologies Pty Ltd 2012 Page 7 of 30
Version October 2012. Uncontrolled if printed

3 Using the HLI Demo Project
Now that you have Perimeter Patrol setup and waiting to accept connections, it’s probably

going to be easiest for you if you use the demo HLI project to make your first connection,

since all the work is done for you.

You need to have Visual Studio 2010. You can download it from

http://download.microsoft.com/download/B/1/7/B17C731C-3161-45C0-AC16-

56C81BAAF85C/vs_premiumweb.exe if you don’t already have it on your computer.

Using the installation cd, open the PerimeterPatrolClientDemoProject folder and copy it to

a place your computer’s hard disk. In the place you have saved it, double-click

PerimeterPatrolClientDemoProject.sln

After the project loads, you can click References in the Solution Explorer, and you will see

that there is a reference error:

http://download.microsoft.com/download/B/1/7/B17C731C-3161-45C0-AC16-56C81BAAF85C/vs_premiumweb.exe
http://download.microsoft.com/download/B/1/7/B17C731C-3161-45C0-AC16-56C81BAAF85C/vs_premiumweb.exe

JVA Perimeter Patrol™
High Level Interface

Using the HLI Demo Project

© JVA Technologies Pty Ltd 2012 Page 8 of 30
Version October 2012. Uncontrolled if printed

This was done on purpose so that you can learn how to reference the .dll file that is provided

for you. Right-click on the PP.HLITransport reference and choose Remove.

Now right-click on References and choose Add Reference

Choose Browse and navigate to the place where you saved the PP.HLITransport.dll file.

Now that you have added PP.HLITransport.dll as a reference to the project, it should

compile successfully. Right-click on PerimeterPatrolClientDemoProject and choose

Rebuild.

The project should compile successfully.

Now you need to setup the connection parameters so that it can connect to Perimeter Patrol

Server.

Right-click PerimeterPatrolUI.cs and choose View Code

JVA Perimeter Patrol™
High Level Interface

Using the HLI Demo Project

© JVA Technologies Pty Ltd 2012 Page 9 of 30
Version October 2012. Uncontrolled if printed

In the code window that opens, modify the parameters shown below with the values needed

to connect to Perimeter Patrol Server.

 Set the USER_NAME and PASSWORD parameters to be the same as one of the

user accounts setup in the Perimeter Patrol’s configuration settings.

 Set the SERVER_ADDRESS parameter to the static IP address of the computer

running Perimeter Patrol

 Set the SERVER_PORT parameter to the same value as the “TCP Listen Port” that

you specified in Perimeter Patrol’s configuration.

 Set the AUTH_KEY parameter to the same value as the “Authentication Key” that

you specified in Perimeter Patrol’s configuration.

Now press the F5 key to start the demo program.

When the program runs, click Start to make it connect.

If the programs connects and begins to display data, then you know that you have the

connection settings correct. If not, you will have to figure out what you need to change.

JVA Perimeter Patrol™
High Level Interface

Using the HLI Demo Project

© JVA Technologies Pty Ltd 2012 Page 10 of 30
Version October 2012. Uncontrolled if printed

3.1 The Interpreter object

The Perimeter Patrol Demo HLI client project contains an Interpreter class which is used to

gather and make sense of the information received over the HLI connection. This class has

been written specifically for the purpose of helping you to understand how to interpret and

use incoming HLI information in your own custom projects.

Figure 3 - The Interpreter object

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 11 of 30
Version October 2012. Uncontrolled if printed

4 Using the HLI in your custom software

4.1 Step 1 - Adding the HLI to your development environment

1. In your visual studio project, add a reference to the PP.HLITransport.dll.

2. This dll targets the .Net Framework Version 4. Ensure your visual studio project

targets the same .Net Framework version.

Figure 4 - A reference to PP.HLITransport.dll

Figure 5 - Referencing .Net Framework version 4. It’s not necessary to use the client profile.

4.2 Step 2 - Creating a HLITransportUser object

Your software uses the HLITransport to communicate with the JVA Perimeter Patrol

software. Therefore it is considered to be a HLITransportUser. Please create a class in your

project that inherits the PP.HLITransport.IHLIClientTransportUser interface.

When you inherit this interface and implement the functions it requires, you give the HLI

transport object a hook to pass information into your system or request information from your

system.

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 12 of 30
Version October 2012. Uncontrolled if printed

Figure 6 - Create a class that inherits PP.HLITransport.IHLIClientTransportUser

Now you are ready to create and dispose the HLITransport object. First notice that to create

the HLI Transport object you call a static function inside PP.TransportLayer, passing in an

object that inherits the PP.HLITransport.IHLIClientTransportUser interface. This is the object

that will be used by the HLI Transport object as the hook it needs for posting and requesting

data.

When you Start the object, it will immediately begin attempting to connect to the JVA

Perimeter Patrol software. If it fails to connect, it will simply keep on trying to connect over

and over again. If a connection is established and then fails, it will continually attempt to

reconnect.

There is no Stop function, and an exception will be thrown if you attempt to call the Start

function more than once.

Notice that we take special care to Dispose of the HLI Transport object when we are

finished with it. It’s very important to Dispose it when you are finished with it, because it

needs to shut down all the threads that it had running.

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 13 of 30
Version October 2012. Uncontrolled if printed

Figure 7 – Creating, starting and disposing the HLI Transport object

There are two more steps left for you to understand. The next step, Step 3, is about

implementing all the functions required by PP.HLITransport.IHLIClientTransportUser so that

the HLI Transport object can “hook into” your application to deliver information to your

system or request information from your system.

Step 4 is about using the HLI Transport object to send commands to the JVA Perimeter

Patrol.

4.3 Step 3 - Implementing PP.HLITransport.IHLIClientTransportUser

This section is about functions you have to implement in the object you create that inherits

the PP.HLITransport.IHLIClientTransportUser interface.

Before we go ahead, note the following important facts that all of these functions have in

common:

1. If your function throws an exception, it will stop the worker threads in the HLI

Transport object and the HLI Transport object will stop working. Catch all your

exceptions or make sure they do not throw exceptions.

2. If your function takes a long time to execute, it may prevent the HLI Transport

object’s worker threads from reading the underlying tcp/ip socket connection and

result in a connection loss. Keep your functions very fast and simple.

3. Your functions are called by worker threads that are not the same as the main thread

your software is using. Therefore, you will have to make sure that your functions

access your data structures in a thread-safe manner and that you use “Invoke” to call

methods in your UI.

GetAuthenticationKey()

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 14 of 30
Version October 2012. Uncontrolled if printed

When you were setting up JVA Perimeter Patrol in the “Getting Started” section of this

document, you had to provide JVA Perimeter Patrol with an authentication key that your

software would have to know before it would be allowed to connect to JVA Perimeter Patrol.

Normally you will store the authentication key in the configuration settings of your software

project. In the example code below, I cheated a little by simply hard-coding an authentication

key that matches the JVA Perimeter Patrol I used for development and testing.

The HLI Transport object will call this function every time it tries to connect, which could be

as often as once every second if it is failing to connect. Make sure it is not a time-consuming

function.

Figure 8 – Example implementation for GetAuthenticationKey()

GetIPEndPointForClientConnection()

The HLI Transport object will call this function to get the information it needs about how to

connect to the JVA Perimeter Patrol software.

In the example code below, I have stored the server address as a string and use the

System.Net.Dns object to convert it to a proper IP address object. If you are in development

and need to connect to localhost, the string “localhost” will not work. Use “127.0.0.1” instead.

Alternatively, you can skip the Dns conversion and use System.Net.IPAddress.Any. This

function will be called every time the HLI Transport object attempts to connect to the JVA

Perimeter Patrol server, which could be as often as once every second. Make sure it is not a

time-consuming function.

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 15 of 30
Version October 2012. Uncontrolled if printed

Figure 9 – Example implementation for GetIPEndPointForClientConnection()

OnConnection() and OnConnectionError()

The HLI Transport object will call these functions to notify your software that it has

connected to or disconnected from the JVA Perimeter Patrol software.

When OnConnection is called, it means that you have connected to the JVA Perimeter

Patrol, but you have not been authenticated yet. The JVA Perimeter Patrol will check your

authentication key and will soon disconnect you if it is not correct.

When OnConnectionError is called, it could mean that the HLI Transport layer was unable

to connect to the JVA Perimeter Patrol but it could also mean that the JVA Perimeter Patrol

rejected your connection because your authentication key was incorrect.

If the HLI Transport object is disconnected from the JVA Perimeter Patrol, it will attempt to

reconnect once every second. It will call the OnConnectionError function after every single

failed connection attempt.

The example implementation of these functions simply calls functions that make the User

Interface tell the user it is not connected to JVA Perimeter Patrol. Note that to do so in a

thread-safe manner, the UI methods ShowTransportLayerConnected and

ShowTransportLayerDisconnected must use “Invoke” to prevent cross-thread errors.

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 16 of 30
Version October 2012. Uncontrolled if printed

Figure 10 - Example implementation for OnConnection() and OnConnectionError()

OnSessionAccepted()

The OnSessionAccepted function is called after a connection is established with the JVA

Perimeter Patrol and your authentication key has been verified.

This function brings along some important information for your software system to use:

 The JVA Perimeter Patrol’s configuration settings

o As a ConfigDictionary object

 The JVA Perimeter Patrol’s log file

o As an XML-serialized string containing a database table

 The JVP Perimeter Patrol’s open alarms

o As an XML-serialized string containing a database table of the alarms.

 The JVA Perimeter Patrol’s map image

o As a byte array

Remember to handle the function quickly so that the HLI Transport object can continue

reading data from the TCP/IP connection. If you have any heavy processing of the data, do it

in a different thread.

Imagine the scenario where an administrator changes the configuration settings on JVA

Perimeter Patrol while your software is connected via the HLI Transport. Of course, JVA

Perimeter Patrol will have to notify your software system about the configuration changes.

To do so, JVA Perimeter Patrol will disconnect your HLI Transport object and allow it to

automatically reconnect one second later. After the reconnection is successful, JVA

Perimeter Patrol will send another OnSessionConnected message with the new

configuration settings.

You can read the Understanding the Configuration Data Structure section Error!

Reference source not found. to learn more about the JVA Perimeter Patrol configuration

settings.

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 17 of 30
Version October 2012. Uncontrolled if printed

Figure 11 - Example implementation for OnSessionAccepted()

Figure 12 - Displaying the Map Image

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 18 of 30
Version October 2012. Uncontrolled if printed

Figure 13 - Displaying JVA Perimeter Patrol's configuration settings in a DataGridView. Note that the
code shown also demonstrates how to merge new incoming data to a DataGridView without causing it to
flicker.

OnOpenLogUpdated()

This function is called whenever there is a change to the open alarms stored in Perimeter

Patrol. You will need to thoroughly understand the data that you receive in this function,

because it will be important that you are able to display the alarms properly. The best way

for you to learn how to interpret the alarm data is to read and understand the coding in the

Interpreter object that is supplied with the demo project. You can see in the code sample

below that we send the new open alarm information to the interpreter object.

Figure 14 – Implementing the OnOpenLogUpdated() function

OnLogUpdated()

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 19 of 30
Version October 2012. Uncontrolled if printed

This function is called by the HLI Transport object whenever JVA Perimeter Patrol adds a

new log entry or modifies an existing log entry. We keep things simple for you by sending

the entire log contents every time. The log is passed in as a string containing an XML-

serialized DataTable. You most likely do not need to process the log data – displaying it to

the user will be sufficient for most use cases.

Figure 15 - Implementing the OnLogUpdated() function

Figure 16 - Deserializing the log file and displaying it in a DataGridView. Note that the code shown also
demonstrates how to merge new incoming data to a DataGridView without causing it to flicker.

OnLiveData()

The HLI Transport object will call your OnLiveData() function every time it receives a Live

Data update from the JVA Perimeter Patrol, which is about once every second depending on

your network connection speed. To keep things simple for you, the HLI Transport object

passes the entire live data structure to you on every call.

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 20 of 30
Version October 2012. Uncontrolled if printed

Please study the Interpreter object in the HLI Client Demo Project to understand how you

should read the live data.

Figure 17 - Implementing the OnLiveData() function. Note how the demo project sends the live data to the
interpreter to have the live data placed in interpreted objects.

Figure 18 - Displaying LiveData in a DataGridView

NotifyClient()

This function is called whenever the JVA Perimeter Patrol sends a message that you should

display to your user. Messages are usually related to authentication problems, or when the

JVA Perimeter Patrol is unable to complete the action that the user requested. In the

example code below, the message is displayed by a popup message box window. You may

like to implement a more user-friendly way to display messages to the users of your software

system.

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 21 of 30
Version October 2012. Uncontrolled if printed

Figure 19 - Implementing the NotifyClient() function

Figure 20 - Displaying the "NotifyClient" message to the user

4.4 Step 4 – Sending commands to Perimeter Patrol

This section contains all the commands that you can send to the JVA Perimeter Patrol.

All commands require the username and password of the currently logged-in user. This

username and password must match the usernames and passwords set up in the

Configuration Settings inside JVA Perimeter Patrol. They are required for our second layer of

authentication security and for logging purposes as well. In this way, we have given you the

ability to run your software in display-only mode with commanding disabled. If you want to,

you can set up a system whereby when your software user needs to send a command, they

will be prompted to enter the higher-level supervisor’s username and password.

Most of the commands are asynchronous. This means that the command is sent, and the

function continues without waiting for the command to be executed or any feedback about

the command results.

Asynchronous functions return a boolean value. They return true if the command was

successfully sent to the JVA Perimeter Patrol, or false if there was a problem sending the

command. For example, an interrupted connection will result in the function returning false. If

the function returns false, you can check the exception object to find out the error message.

The functions will still return true if the message reached JVA Perimeter Patrol, even if JVA

Perimeter Patrol was unable to carry out the action requested.

There are a couple of synchronous functions, made obvious by the _block suffix on the

function name. These functions block execution until their results have been returned. These

functions throw an exception if the operation times out or there is some circumstance

preventing the result of the command from being received.

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 22 of 30
Version October 2012. Uncontrolled if printed

If JVA Perimeter Patrol receives the command but is unable to carry out the requested

action, it will send a message to your software using the “NotifyClient” function that you have

to implement for receiving these messages.

4.4.1 Special commands

ControlOnSchedule

 When True, tells JVA Perimeter Patrol to automatically arm and disarm the energiser

zones according to the weekly schedule set up in the JVA Perimeter Patrol Server.

 When False, tells JVA Perimeter Patrol to wait for user commands for arming and

disarming the energiser zones.

The status of this parameter is contained in the JVA Perimeter Patrol’s configuration

settings. When you change it, JVA Perimeter Patrol will disconnect your software and all the

other HLI Transport clients that are attached. When your HLI Transport object automatically

reconnects, you will receive a new configuration settings containing the modified

ControlOnSchedule parameter. Therefore your User Interface display should reflect the state

of the variable contained in the configuration settings.

4.4.2 Commands that apply to all electric fence zones

JVA Perimeter Patrol cannot obey these commands if ControlOnSchedule is enabled.

Therefore setup your user interface to disable these commands unless the user first disabled

ControlOnSchedule.

 ArmAllHighPower

 ArmAllLowPower

 DisarmAll

4.4.3 Commands that apply to individual zones.

These commands require a zoneId parameter. All the zones and their zoneId parameters

are contained in the configuration settings that you receive in the OnSessionAccepted

message after you first connect.

JVA Perimeter Patrol cannot obey these commands if “ControlOnSchedule” is switched on.

Therefore set up your user interface to disable these commands unless the user first

switched “ControlOnSchedule” off.

 ArmHighPower

 ArmLowPower

 Disarm

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 23 of 30
Version October 2012. Uncontrolled if printed

Figure 21 - List of commands that can be sent to the JVA Perimeter Patrol

4.4.4 Other commands

ToggleOutputState

Many of the zones, including those belonging to energisers, zone monitors and IO Boards,

have output relays. You can toggle the output state of the relays with this command. The

zoneIndex parameter identifies the zone, and because each zone may have several output

relays, the outputIndex parameter identifies the output relay.

Close Alarms

This command allows you to close resolved alarms. See the Understanding the Alarms

system section for more information about alarms.

ClearAlarmMemory

This command allows you to close latching alarms that were generated by devices attached

to JVA Perimeter Patrol Server. The “Understanding Alarms” section will give you more

information about the latching alarms.

RequestArchiveLog_block

Requests an archived log for a given year and month in the past. The archived log is

returned inside an EventLogArchiveResult object, which, amongst other helpful information,

contains a string with the log DataTable serialized as an xml string.

Notice that this function is blocking.

MuteAlarms

Commands JVA Perimeter Patrol Server to stop sounding sirens for the open alarms. When

JVA Perimeter Patrol Server receives this command and mutes the alarms, you will notice a

couple of changes in the data that it sends you: a) The openLog containing the open alarms

will all have their muted fields set to a not-null value, and b) the “HasUnmutedAlarms” value

in live data will be false.

Your custom software’s siren function should activate and deactivate according to the

“HasUnmutedAlarms” value in Live Data, so that it stays synchronized with the JVA

Perimeter Patrol Server. In this way, any client can mute alarms and have the results

duplicated not only in the server, but also on all the other clients that are connected.

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 24 of 30
Version October 2012. Uncontrolled if printed

4.5 Understanding the Alarms system

JVA Perimeter Patrol monitors the fence status and raises alarms whenever there is a

condition on the fence or the security system that users should be aware of.

Some alarms are generated by devices such as electric energisers or monitors and sent to

the JVA Perimeter Patrol. Other, more detailed alarms are generated by JVA Perimeter

Patrol itself. You will need to understand the differences between these alarms when you are

writing software that interfaces with the JVA Perimeter Patrol, because they have a slightly

different life cycle and you will need to handle them differently.

Alarms generated by devices such as electric fence energisers and monitors

Alarms generated by devices such as electric fence energisers and monitors include those

listed below. You can find out more about them in the user manuals for each device. This list

is not guaranteed to be up to date as it is intended to be an example, not an authoritative

reference.

 Fence-related alarms

o Fence alarm – there is a problem with the fence

o Ground alarm – there is a problem with the energiser’s earth connection

o Gate alarm – one or more gates have been left open (or jammed open) for

too long

 Device-related alarms

o AC Fail alarm – there is no mains power and the device is relying on its

battery.

o Low Battery alarm – the device’s battery is getting low.

o Bad Battery alarm – the device’s battery is flat, too old, or has been damaged

o Tamper alarm – the device’s case has been opened by an unauthorized

person

o PCB Fault alarm – the device needs repair

JVA Perimeter Patrol reports the status of these alarms exactly as they are reported by the

device generating them. Alarms generated by devices can “latch on”, which means they are

not closed when the condition causing the alarm has been resolved. Instead, the devices

wait for a user to acknowledge the alarm before they close the alarms.

Imagine for example that a gate has been left open for too long and one of the devices has

generated a Gate alarm. After the gate has been closed, the condition causing the alarm has

been resolved. However, the device will hold the alarm open until it receives a

ClearAlarmMemory command from a keypad or from JVA Perimeter Patrol. Because JVA

Perimeter Patrol reports alarms exactly as they are reported by the devices, JVA Perimeter

Patrol will also indicate these alarms until after they have been cleared in the devices.

Clearing the device’s alarm memory is the purpose of the ClearAlarmMemory command

that you will see in the High Level Interface documentation. Without this command, your

software users will not be able to stop the devices from reporting resolved alarms.

The best way for you to know whether an open alarm was generated by a device is to use

the code found in the Interpreter object for this purpose in the demo HLI client project.

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 25 of 30
Version October 2012. Uncontrolled if printed

Alarms generated by JVA Perimeter Patrol

In addition to reporting alarms generated by devices, the JVA Perimeter Patrol generates its

own alarms too. Many of them look similar to the alarms generated by devices, but they are

often more informative. For example, while a device can only generate a general fence

alarm, the JVA Perimeter Patrol can create Under Voltage and Over Voltage alarms for each

of three locations at which voltage is measured on each zone. This extra information helps

users to diagnose the alarm causes more easily.

JVA Perimeter Patrol also generates specialized alarms such as the following:

 Coms failure – trouble communicating with the devices.

 Control Override – devices have been disarmed either by someone not using your

software or JVA Perimeter Patrol. For example, someone may have used a keypad

to manually disarm a device.

Every alarm must be acknowledged by users, regardless of whether the alarm condition still

exists. For example, the voltage on a fence may temporarily drop below the acceptable level

and an Under Voltage alarm will be opened. If the voltage on the fence rises back up to an

acceptable level, the condition causing the alarm will no longer exist, but Perimeter Patrol

will hold the alarm open until a user has acknowledged it.

Summarizing, JVA Perimeter Patrol alarms have a three-stage lifecycle:

 Stage 1: Open

o Alarm condition has been detected.

o Eg, Fence voltage has fallen below the lower alarm level.

 Stage 2: OpenResolved

o Alarm condition has been resolved but no user has acknowledged it yet.

o Eg, Fence voltage has risen back up to acceptable levels.

o Even though the condition causing the alarm no longer exists, JVA Perimeter

Patrol is holding the alarm open until a user has acknowledged that the alarm

had occurred.

 Stage 3: Closed

o User has acknowledged that the alarm existed and written a note in the log

explaining the situation.

Sometimes there will be a situation where the alarm cannot be resolved. For example,

somebody might crash a car into an electric fence, causing the fence voltage to drop below

the lower alarm level. It will take a day or more for an electric fence installation contractor to

come and repair the fault. In this case, the user will not be able to close the alarm, because

the alarm is not resolved. Users can only close alarms that are resolved.

When this is the case, the user will want to switch off the alarm sirens, strobe lights or any

other systems are being used to alert people about the alarm. JVA Perimeter Patrol allows

users to Mute open alarms. Muting alarms will switch off the sirens, strobe lights, etc, but it

will not close the alarm. You can send a Mute command to Perimeter Patrol through the HLI.

JVA Perimeter Patrol™
High Level Interface

Using the HLI in your custom software

© JVA Technologies Pty Ltd 2012 Page 26 of 30
Version October 2012. Uncontrolled if printed

Your custom HLI Client software can also use the CloseAlarms command to close the

alarms when a user has acknowledged them and entered a note to explain the

circumstances causing the alarm.

4.6 Understanding the Configuration Data structure

JVA Perimeter Patrol sends its configuration settings to your software system when the HLI

Transport object connects and is authenticated successfully. The configuration settings are a

ConfigDictionary of string keys and values.

The best way for you to understand the Configuration Data fields is to look at the code of the

example Interpreter object and see how it reads the configuration settings to create objects

that can be used in your code.

An appendix lists the data contained in the configuration data.

4.7 Understanding the LiveData structure

The Live Data structure is a ConfigDictionary of string keys and string values.

Look at the code in the Interpreter object to see how it maps incoming live data to the

objects that it created from the configuration data.

Alarms

There are a lot of named alarm values contained in this data in addition to arrays of open

unresolved and open resolved alarms. Do not use these values in your custom software.

They are present because they are used when two instances of Perimeter Patrol connect to

each other. You don’t need them for your custom software. Examine the code used in the

Interpreter object in the HLI Client demo project and use the same methodology it uses for

reporting alarms in your own custom software.

Voltages and Arm States

Read the code in the Interpreter object in the HLI Client demo project to see how to get

voltages and arm states of zones. Use the same methodology in your own custom software.

JVA Perimeter Patrol™
High Level Interface

Appendix 1 – Fields in the Configuration Data

© JVA Technologies Pty Ltd 2012 Page 27 of 30
Version October 2012. Uncontrolled if printed

5 Appendix 1 – Fields in the Configuration Data

Key Example Value Comment

FullScreenPassword Password to exit full screen

mode. Administrators can

set this parameter to stop

people from exiting JVA

Perimeter Patrol.

FullScreenRequiresPassword False Does JVA Perimeter Patrol

require a password to exit

full screen mode?

ScheduledControlEnable False Can JVA Perimeter Patrol

automatically arm and

disarm the zones according

to the weekly control

schedule? Use the

“ControlOnSchedule”

command to set this value

from your own software.

Zones 7 Number of zones that have

been configured in JVA

Perimeter Patrol. Since

there are seven zones, the

rest of the configuration

dictionary will contain

values for Zones.0,

Zones.1, … Zones.6

Zones.0.ArmStates 336 Number of arm states.

Is always 336 because that

is the number of 30-minute

periods in one week.

The ArmStates represent

the weekly schedule that

JVA Perimeter Patrol will

use to automatically arm

and disarm zones when the

“ScheduledControlEnable”

setting is True.

Zones.0.ArmStates.0 Disarm Represents the scheduled

arm state for the first 30

minutes of the week

starting at 12:00am on

Sunday

Zones.0.ArmStates.1 Disarm The second 30-minute

block of the week

… … Continues until

Zones.0.ArmStates.335

Zones.0.Ch 0 Some energiser types can

power more than one zone.

JVA Perimeter Patrol™
High Level Interface

Appendix 1 – Fields in the Configuration Data

© JVA Technologies Pty Ltd 2012 Page 28 of 30
Version October 2012. Uncontrolled if printed

If this zone belongs to one

of these energisers, this

parameter contains the

index of the zone in the

energiser.

Zones.0.ForceUseIpAddress False Applies only when

ComMode = ETHERNET.

If true, Perimeter Patrol has

been configured to connect

to the zone through a

PAE212 ethernet adapter

device using a static IP

Address. If false, Perimeter

Patrol is connecting to the

PAE212 ethernet adapter

using its Network Name.

This information is helpful

for you to know how to

display information about

the zone in your custom UI.

Zones.0.HostEnergiserType Z14 The type of energiser

powering this zone? The

energiser type helps us

know how many voltages

will be measured, how

many relay outputs the

zone has etc.

If this zone is an IOBoard

or a zone monitor instead of

an energiser zone, this

value will help you

determine that.

Zones.0.Inputs 0 How many inputs does this

zone have? Applies to IO

Boards only. If this value is

non-zero, there will be

extra fields representing the

individual values of each

input. Eg: Zones.0.Inputs.0

= 1

Zones.0.Ip 4 Number of items for the

zone’s IP address. Is always

equal to 4. Applies only

when ComMode =

ETHERNET

Zones.0.Ip.0 192

Zones.0.Ip.1 168

Zones.0.Ip.2 0

Zones.0.Ip.3 13

Zones.0.KeypadId 2 The keypad id of the device

JVA Perimeter Patrol™
High Level Interface

Appendix 1 – Fields in the Configuration Data

© JVA Technologies Pty Ltd 2012 Page 29 of 30
Version October 2012. Uncontrolled if printed

for this zone.

Zones.0.UpperAlarmVoltage 9 Raise an alarm if voltage

rises above this value while

the zone is armed at high

power.

Zones.0.LowerAlarmVoltage 3 Raise an alarm if voltage

drops below this value

while the zone is armed at

high power

Zones.0.LowPowerLowerAlarmVo

ltage

0.5 Raise an alarm if the

voltage drops below this

value while the zone is

armed at low power

Zones.0.LowPowerUpperAlarmVo

ltage

1.8 Raise an alarm if the

voltage rises above this

value while the zone is

armed at low power

Zones.0.Name My Zone A user-friendly name for

the zone. This value may

not have been set by the

administrator who

configured the JVA

Perimeter Patrol

Zones.0.NetworkName ETH-161371 The network name PAE212

device that connects this

zone to the Perimeter Patrol

Server. Applies only when

ComMode = ETHERNET.

Zones.0.NumLinePoints 0 Number of line points for

this zone on the map.

Zones.0.LinePointsX 2 Number of X coords for the

line points on the map

Zones.0.LinePointsX.0 100 X coord for the line point

Zones.0.LinePoints.X.1 200 X coord for the line point

Zones.0.LinePointsY 0 Number of Y coords for the

line points on the map

Zones.0.LinePointsY.0 100 Y coord for the line point

Zones.0.LinePointsY.1 100 Y coord for the line point

Zones.0.Outputs 0 Number of output relays

this zone has.

Zones.0.Outputs.0 True False means the output is

off (no current can flow

through it)

Zones.0.RelayControlEnable False Indicates whether it is

possible to toggle output

relays for this zone.

Zones.0.Relays 5 Number of output relays

this zone has. Applies only

to zones, and zone

monitors, not to IO Boards

JVA Perimeter Patrol™
High Level Interface

Appendix 1 – Fields in the Configuration Data

© JVA Technologies Pty Ltd 2012 Page 30 of 30
Version October 2012. Uncontrolled if printed

Zones.0.Relays.0 False False means the relay is off

(no current can flow

through it)

Zones.0.Relays.1 False

Zones.0.Relays.2 False

Zones.0.Relays.3 False

Zones.0.Relays.4 False

Zones.0.Sectors 0

Zones.0.XPos 0 Position of the zone label

on the image map.

Measured in pixels from

the left.

Zones.0.YPos 0 Position of the zone label

on the image map.

Measured in pixels from

the top.

